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Introduction. This memo focuses on the astrometric reconstruction problem in \atland",

i.e., for stars and the SIM instrument constrained to a plane. In the model under consideration

the celestial sphere is replaced by a circle, and a symmetric assumption is made on the viewing

scenario. Speci�cally, it is assumed that each adjacent pair of stars on the circle is is observed

with a �xed baseline of the instrument, and the normal to this baseline bisects the angle between

the two stars. The resulting problem is simple enough to analytically characterize the solutions

to the astrometry problem. These solutions when extrapolated to the three dimensional problem

will hopefully lead to some useful insights regarding instrument �eld of view and calibration. (But

perhaps your grandmother already knew these.)

Nevertheless, in summary form the main conclusions are: (i) When there is no scale error

(the length of the baseline is known), when using a �xed baseline orientation it is advantageous

to observe stars that are close together. For uniformly distributed stars on the unit circle with

angle � separating the nominal positions, the variance of the reconstruction error is proportional

to 1= cos2(�=2). This is a manifestation of the instrument sensitivity and viewing scenario { to

maintain a long projected baseline while observing two stars with the same baseline orientation

requires the stars to be close to one another. (ii) For uniformly distributed stars the variance grows

linearly with the number of stars. (iii) When the stars are uniformly distributed and there is an

unknown scale error, the variance of the reconstructed positions is una�ected by the presence of the

scale error. That is, the covariance matrix of the star positions and scale has the form diag(
; �)

where 
 is the star position covariance matrix and � is the variance of the scale error. The

heuristic explanation for this result is that the perturbation in the measured delays introduced by

a scale error cannot at all be compensated by perturbations in the star positions (when the nominal

star positions are uniformly distributed). (iv) The variance of the scale error is proportional to

1= sin2(�=2) in the case of uniformly distributed stars, where � again denotes the angle between

adjacent star positions. (v) When the stars are not uniformly distributed, there is coupling between

the scale error and the star position error. An exact expression for this variance is derived. The

position error is shown to consist of a term that represents the error when there is no scale error

plus another term contributed by a multiple of the scale error. The degree of this coupling error

is shown to be directly related to the degree of nonuniformity of the star distribution. (vi) Given

two observing scenarios, call them S1 and S2, if the separation angle between stars in S1 is greater

than in S2, then the resulting baseline scale error for S1 is less than the error for S2. That is, the

scale is more accurately estimated when stars are well separated.

These atland conclusions are suggestive of a few conjectures. First the the only intrinsic

advantage to increasing the size of the FOV is to reduce the scale error. There are, however,

several derived advantages. A larger FOV allows more stars to be tied together with a single

baseline measurement, thus permitting more observations per star. A second advantage is that

grids that cover the celestial sphere can use fewer stars; hence mitigating the increased error

introduced by having to estimate the positions of a greater number of stars. In the planar case

we saw that the variance in the position grows linearly with the number of stars required to

cover the circle. We conjecture that this growth for the 3{D problem is more benign. The basis

for this conjecture comes from the observation that the normal equations that arise from the

estimation problem look something like an approximate second di�erence operator (d2=dx2 in the

linear case and the Laplacian, �, for a rectangular grid). The resulting variance is then related to
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the eigenvalues of these approximations. In one dimensional space the eigenvalues lead to a linear

growth in the variance. If we could isometrically map the sphere onto the plane (which we cannot

do), the distribution of the eigenvalues would lead to a logarithmic growth in the position variance.

On the sphere we're not sure, but we guess that it would be sublinear as well.

This could possibly be exploited in choosing how to close the grid. Because closure with

fewer stars leads to a smaller covariance error, it may be advantageous to incorporate \wide angle"

loops consisting of few stars that form closed subgrids within the observation scenario. There

is a trade{o� between the sensitivity of the instrument (small angular separation between stars

observed with the same baseline increases the sensitivity of the measurement), versus the number

of stars required to get closure.

We conjecture that the relative decoupling between scale and position error which was exhib-

ited in the planar case can similarly be achieved to some extent on the sphere. For example, the

observation scenario that was de�ned in the plane has a 3{D analogue by pointing the instrument

so that the normal to the baseline contains the barycenter of a triple of stars with the same baseline.

(This particular model was suggested [1].)

For near term investigations several things come to mind in addition to checking out some of

the conjectures described above. These include the interaction between the feedforward command

and the notion of the regularized science baseline measurement, what calibration cycles need to be

performed and when, and observability analysis.

The Setup. Let s0, s1; ..., sN denote the directions of N +1 stars located on the unit circle.

We assume the following observation sequence: For each successive pair of stars, si, si+1, there is

an interferometer baseline vector bi for which the pair of observations

yi1 =< si; bi >; (1a)

yi2 =< si+1; bi >; (1b)

is generated for i = 1; :::; N with the periodic condition sN+1 = s1. Because of a priori knowledge

errors in the star directions and baseline vectors we seek corrections to si, bj of the form

si ! si + !i � si; and bj ! bj + !j � bj ; i = 1; :::; N; (2)

where !i and !
j are di�erential rotation vectors.

Using this linearization (1) becomes

yi1 =< si; bi > + < si � bi; !i > � < si � bi; !
i >; (3a)

yi2 =< si+1; bi > + < si+1 � bi; !i+1 > � < si+1 � bi; !
i > : (3b)

In the sequel it will be assumed that for each pair of observations made with the baseline

vector bi the normal to bi bisects the angle between the nominal star positions si and si+1 so that

< si; bi >=< si+1; bi > :

Uniform Star Distribution. Assume that the nominal positions of the stars are uniformly

distributed over the unit circle. Thus there is an angle  such that

jsi � bij = jsi+1 � bij = cos (4)

for all i. ( is the angle between the normal to the baseline vector bi and the star direction vector

si.) This observation scenario is stringent, but not altogether ludricous. (For example, with a 10m
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baseline, if the a priori catalogue error is 5mas, a 40as pointing error leads to a 50pm delay error.

) Equation (3) can then be assembled as the system

T

0
BB@
!1
!2
...

!N

1
CCA = y; with y =

0
BBBB@

y11� < s1; b1 >

y12� < s2; b1 >
...

yN1� < sN ; bN >

yN2� < s1; bN >

1
CCCCA : (5)

Adding a noise vector � to the observations results in the equation

y = Tx+ �; (6)

where x denotes the stacked vector consisting of the star position and baseline position perturba-

tions. We will assume that E(��T ) = �2I, where I = 2N � 2N identity matrix.

Note that we can eliminate the unknowns !i by taking the di�erence of (3a) and (3b). Let

C denote the matrix that does this operation for each pair of equations. Then CT = jbj cos L,
where

L =

0
BBBB@

1 0 � � � 0 �1
�1 1 0 � � � 0

0 �1 1 � � � 0
...

0 � � � �1 1

1
CCCCA (7)

An easy calculation shows that CCT = 2I, where I now denotes the N �N identity matrix. Thus

after applying C, (6) becomes

Cy = jbj cos L! + �; (8)

where ! = [!1 � � �!N ]
T and � = C� with E(��T ) = 2I�2: Let w = [1 � � � 1]T , and note that Lw = 0.

In fact N(L) = sp(w). Let U denote an N � (N � 1) orthogonal matrix whose columns are all

orthogonal to w. Since L has a nontrivial null space, we seek solutions to the least squares problem

(or equivalently the minimum variance estimation problem)

min
!
E(jjbj cos L! � Cyj2) such that < !;w >= 0; ! = KCy; (9)

for some matrix K. Although there are many ways to normalize ! to obtain a unique solution to

(9), the condition < !;w >= 0 leads to the minimum variance solution over all normalizations of

!. With this normalization (8) becomes

Cy = jbj cos LUv + �; (10)

and the minimum variance problem (9) becomes

min
v
E(jjbj cos LUv � Cyj2) such that v = KCy: (11)

The solution to (9) is

!̂ =
1

jbj cos 
U [UTLTLU ]�1UTLTCy; (12)
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with covariance matrix

E((! � !̂)(! � !̂)T ) =
2�2

jbj2 cos2  
[UTLTLU ]�1: (13)

We observe that LTL is the periodic tridiagonal matrix

LTL =

0
BB@

2 �1 0 � � � �1

�1 2 � � � � 0
...

�1 0 � � � �1 2

1
CCA ; (14)

for which the eigenvalues and eigenvectors are known (it is diagonalized by the Fourier matrix

representing the discrete Fourier transform [2]). Hence, the optimal estimate and covariance in

(12) and (13) can be computed in closed form. In particularn the variance of the estimate is derived

from the sum of the reciprocals of the nonzero eigenvalues of LTL:

E(j! � !̂j2) =
2�2

jbj2 cos2  

N�1X
j=1

1

1� cos 2�j
N

: (15)

Two immediate observations from (15): (i) The variance is proportional to 1=jbj2 cos2( ). (ii)
From the approximation 1� cosh � h2=2, for large N the variance in position of each star grows

linearly.

The E�ect of Scale Error. Next we will assume that there is a small scale error in the

baseline vector bj . We replace the model (2) with

bj ! bj + !j � bj + �bj ; (16)

where � is a �xed, small scalar. The linearization (3) with the included scale error has the form

yi1 =< si; bi > + < si � bi; !i > � < si � bi; !
i > +� < si; bi >; (17a)

yi2 =< si+1; bi > + < si+1 � bi; !i+1 > � < si+1 � bi; !
i > +� < si+1; bi > : (17b)

Again we require the second order terms to have negligible contribution, e.g. j!ij� � 10�12m.

(This bound is easily achieved since j!ij � 10�7, leads to j�j � 10�5m.) Since < si; bi >= � <

si+1; bi >= jbj sin ; taking di�erences in (17) leads to

yi1 � yi2� < si; bi > + < si+1; bi >= jbj cos (!i � !i+1) + 2jbj sin �: (18):

With the addition of the unknown scale error �, the matrix L in (7) is augmented by the single

column vector u, u = 2jbj sin [1 � � � 1]T to have the form

~L = [L u]: (19)

Since Lu = 0, rank(~L) is one greater than rank(L). (If not, then it is possible to solve the equation

Lx = u; hence u 2 R(L) = N(LT )?. But N(LT ) is spanned by u, and the assertion holds.) The

analogue to (11) is

Cy = [jbj cos LU u]

�
v

�

�
+ �: (20)

4



Let

M = [jbj cos LU u]: (21)

Then, �
!̂

�̂

�
=

�
U 0

0 1

�
[MTM ]�1MTCy; (22)

and

E((x� x̂)(x� x̂)T )) = 2�2[MTM ]�1: (23)

Now,

MTM =

�
jbj2 cos2  UTLTLU jbjcos UTLTu
jbj cos uTLU juj2

�
: (24)

Since LTu = 0, MTM is block diagonal, and its inverse is given simply by

[MTM ]�1 =

� 1
jbj2 cos2  

[UTLTLU ]�1 0

0 1
juj2

�
: (25)

Thus we see from (23) and (25) that the scale error and star position error are uncoupled. Note

that the variance of the scale error is given by

2�2

juj2
=

�2

2N jbj2 sin2  
;

which decreases linearly with the number of observations, but increases as the angle between

adjacent star pairs decreases.

Another way of viewing the decoupling between the scale and position error is to realize that

N(LT ) = R(L), so that < u;L! >= 0 for all !. What this says is that the contribution of the scale

error to the measured delay (which is constant for all measurements) cannot be at all compensated

by a perturbation of the estimated star positions.

The error between the positions and the scale couple as soon as LTu 6= 0. This requires

the stars to be in a nonuniform distribution. To model this distribution, let � represent the

N�vector of angular separations between pairs of stars that are observed with the same baseline,

� = [�1 � � � �N ], where �i = angle between si and si+1. Let  i = �i=2 and de�ne D as the

N � N diagonal matrix with cos	 = [cos 1 � � � cos N ] on the diagonal. Also de�ne the vector

v = 2jbj[sin 1 � � � sin N ]
T . The resulting observation equation is essentially as above in (20), but

we replace L by DL, and u by the vector v. Hence, (24) becomes

MTM =

�
jbj2UTLTD2 jbjUTLTDv
jbjvTDLU juj2

�
: (26)

This time MTM is not block diagonal. In fact, LTDx = 0 implies

x = [1= cos 1 � � � 1= cos N ]
T ; (27)

and consequently UTLTDv 6= 0 and there will be coupling between the scale and position errors.

This will now be characterized.

For notational convenience write MTM from (26) in the boardered matrix form

MTM =

�
� g

gT �

�
: (28)
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Thus

[MTM ]�1 =

�
A w

wT �

�
; where (29)

A = [��
1

�
ggT ]�1;

� =
1

�� < g;��1g >
;

w = ����1g:

The Sherman{Morrison [3] formula gives A as

A = ��1 + ���1ggT��1: (30)

The variance of the star positions is given by tr(A), and the variance of the scale error is given by

�.

A somewhat more compact and revealing form for these can be obtained. Note that

< g;��1g > =< UTLTDv; [UTLTD2LU ]�1UTLTDv >

=< DLU(DLU)+v; v >;
(31)

where (DLU)+ is the pseudoinverse of DLU . But DLU(DLU)+ is the projection onto the range

space of DL. Denote this projection as �R(DL). We thus obtain a simple characterization of �

(the variance of the scale error) as

� =
1

jvj2 � j�R(DL)vj2

=
1

j�N(LTDT )vj
2
:

(32)

Here �N(LTDT ) is the projection onto the null space of LTD. (This follows from noting that

jvj2 = j�R(DL)vj
2 + j�N(LTDT vj2.)

Next let v̂ denote the least squares solution to

min jjbjDLUx � vj2; (33)

and observe that v̂ = ��1g. Thus the variance of the star positions is given by tr(A),

tr(A) = tr(��1) +
jv̂j2

j�N(LTDT )vj2
: (34)

The �rst term above is just the variance of the position error when there is no scale error. The

second term shows the scale error contribution to the position error. This contribution depends

fundamentally on j�N(LTDT )vj
2, and the error is minimized when this quantity is maximized.

Recall that the null space of LTD is spanned by the vector x in (27). Thus,

j�N(LTDT )vj
2 =<

x

jxj
; v >2 : (35)
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In the case of uniform star distribution, x is just a multiple of v and (35) above reduces to the

previous result jvj2. Now the components of x will typically not vary signi�cantly from unity since

because of FOV restrictions, 0 <  i < �=8 (this corresponds to a 45o FOV), and 1= cos�=8 � 1:08.

Hence, in general, the magnitude in (35) increases (and the scale error decreases) when the angular

di�erence between the stars has a more uniform distribution.

Recognizing that the variance in the scale error is minimized when � (hence (35)) is maximized,

we will show that this error decreases as the separation angle increases. First we write

<
x

jxj
; v >2= (

X
tan i)

2 1P
1

cos2  i

: (36)

Suppose in two observing scenarios the angular separation between star pairs is given by the

vectors 	1 and 	2 with 	1 < 	2 (where this inequality is understood to hold componentwise.)

Let v(	) = [sin 1 � � � sin N ]
T ; where 	 = [ 1 � � � N ]: De�ne

F (	) =<
x

jxj
; v(	) >2

We will show that F (	1) < F (	2):

Let z = 	2 �	1: For the moment, assume for each i that

@

@ i
<

x

jxj
; v >2=

@F

@ i
� 0: (37)

De�ne F (	(t)) = F (	1+tz); and note that F ( (0)) = F (	1) and F (	(1)) = F (	2): Furthermore,

F (	2) = F (	1) +

Z 1

0

F 0(	(s))zds: (39)

But

F 0(	(s))z =
X @F

@ i
z

� 0

; (40)

since the components of z are all nonegative and we have assumed that @F=@ i is nonnegative.

We will now show this to be the case by di�erentiating (36) with respect to  i:

@

@ i
f(
X

tan j)
2 1P

1
cos2  j

g =
2
P

tan j

[
P

1
cos2  j

]2 1
cos2  i

f
X 1

cos2  j
� tan i

X
tan jg (41)

For  j < �=2 the terms outside the braces are positive. Also note for  i < �=4 (which corresponds

to a FOV less than �=2), tan i < 1: And for each j,

1

cos2  j
� tan j > 0:

Hence, the derivative is nonnegative, and indeed increasing the angular separation between stars

reduces the variance of the scale error.
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